
© Charles Pecheur 1ULg 12 Nov 2001

Symbolic Model Checking
of Domain Models

for Autonomous Spacecrafts

Charles Pecheur (RIACS / NASA Ames)

Vérification symbolique

Raisonnement sur modèles
Intelligence artificielle

Autonomie
Logiciel spatial

© Charles Pecheur 2ULg 12 Nov 2001

Introduction

Past:
Time-stamped control sequences

Future:
On-board intelligence

+ Can respond to unanticipated
scenarios!

– How do we verify all those
scenarios?

Remote Agent
In flight on DS-1, May 99

© Charles Pecheur 3ULg 12 Nov 2001

Outline

• Model-Based Autonomy and Livingstone

• Symbolic Model Checking and SMV

• Verification of Livingstone Models

© Charles Pecheur 4ULg 12 Nov 2001

Model-Based Autonomy

Goal: "intelligent" autonomous
spacecrafts
– cheaper (smaller ground control)

– more capable (delays, blackouts)

• General reasoning engine +
application-specific model

• Use model to respond to
unanticipated situations

• For planning, diagnosis

• Huge state space,
reliability is critical

Reasoning
Engine

Model

commands status

Spacecraft

Autonomous controller

model of

© Charles Pecheur 5ULg 12 Nov 2001

MRMI

C
o

m
m

a
n

d

Discretized
Observations

Mode
updates

Goals
Model

Reconfig
Command

current state

Plan Execution System

High level operational plan

Livingstone

Courtesy Autonomous Systems Group, NASA Ames

Livingstone

Remote Agent's model-based diagnosis sub-system

© Charles Pecheur 6ULg 12 Nov 2001

Outline

• Model-Based Autonomy and Livingstone

• Symbolic Model Checking and SMV

• Verification of Livingstone Models

© Charles Pecheur 7ULg 12 Nov 2001

Model ...

Controller

Planner MIRExec

Modeling
Abstraction

Verification

© Charles Pecheur 8ULg 12 Nov 2001

Model Checking

Controller

Planner MIRExec

“Valve is closed when
Tank is empty”

AG (tank=empty
=> valve=closed)

Modeling
Abstraction

Verification

© Charles Pecheur 9ULg 12 Nov 2001

Symbolic Model Checking

Instead of considering each individual state,

Symbolic model checking...
x

y

0 1 2 ...
0

1
...

© Charles Pecheur 10ULg 12 Nov 2001

Symbolic Model Checking

Instead of considering each individual state,

Symbolic model checking...

• Manipulates sets of states,

x

y

0 1 2 ...
0

1
...

© Charles Pecheur 11ULg 12 Nov 2001

Symbolic Model Checking

Instead of considering each individual state,

Symbolic model checking...

• Manipulates sets of states,

• Represented as boolean formulas,

x

y

0 1 2 ...
0

1
...

x=2 ∨ y=1

© Charles Pecheur 12ULg 12 Nov 2001

Symbolic Model Checking

Instead of considering each individual state,

Symbolic model checking...

• Manipulates sets of states,

• Represented as boolean formulas,

• Encoded as binary decision diagrams.

x

y

0 1 2 ...
0

1
...

x=2 ∨ y=1

1 0

x=2

y=1

© Charles Pecheur 13ULg 12 Nov 2001

Symbolic Model Checking

Instead of considering each individual state,

Symbolic model checking...

• Manipulates sets of states,
– Can handle very large state spaces (1050 +)

• Represented as boolean formulas,
– Suited for boolean/abstract models

• Encoded as binary decision diagrams.
– The limit is BDD size (hard to control)

x

y

0 1 2 ...
0

1
...

x=2 ∨ y=1

1 0

x=2

y=1

© Charles Pecheur 14ULg 12 Nov 2001

Boolean Functions

• Represent a state as boolean variables

s = b1, ..., bn

Non-boolean variables => use boolean encoding

• A set of states as a boolean function

s in S iff f(b1, ..., bn) = 1

• A transition relation as a boolean function over
two states

s → s' iff f(b1, ..., bn, b'1, ..., b'n) = 1

© Charles Pecheur 15ULg 12 Nov 2001

Binary Decision Trees

• Encoding for boolean functions

• Notational convention:
= if c then e else e'
= (c ? e : e')

• Always exists
but not unique

a

b

c

01

1

c

01c

e e'

(a | b) => c

© Charles Pecheur 16ULg 12 Nov 2001

From Trees to Diagrams

• Fixed variable ordering
"layered" tree

a

b

c

0 1 0 1 1101

c c c

b

(a | b) => c

© Charles Pecheur 17ULg 12 Nov 2001

From Trees to Diagrams

• Fixed variable ordering
"layered" tree

• Merge equal subtrees

a

b

c

0 1 0 1 1101

c c c

b

(a | b) => c

© Charles Pecheur 18ULg 12 Nov 2001

From Trees to Diagrams

• Fixed variable ordering
"layered" tree

• Merge equal subtrees

• Remove nodes with
equal subtrees

=> Ordered Binary Decision Diagram

a

b

01

c c

b

(a | b) => c

© Charles Pecheur 19ULg 12 Nov 2001

[Ordered] Binary
Decision Diagrams

• [O]BDDS for short

• Unique normal form
– for a given ordering and

– up to isomorphism

=> compare in constant time
(using hash table)

a

b

01

c

(a | b) => c

© Charles Pecheur 20ULg 12 Nov 2001

Computations with BDDs

• All needed operations can be efficiently computed
using BDDS

• Example: boolean combinator f&g:
(b ? f' : f'') & (b ? g' : g'') = (b ? f'&g' : f''&g'')
cache results –> O(|f|.|g|) time

• Other operations:
– Negation !f
– Instantiation f[b=1], f[b=0]
– Quantifiers exists b . f, forall b . f

© Charles Pecheur 21ULg 12 Nov 2001

Transition Systems with BDDs

Given boolean state variables v = b1, ..., bn

a set of states as a BDD p(v)

a transition relation as a BDD T(v, v')

we can compute the predecessors and successors of p as
BDDs:

(pred p)(v) = exists v' . T(v, v') & p(v')

(succ p)(v) = exists v' . p(v') & T(v', v)

ppred p succ p

© Charles Pecheur 22ULg 12 Nov 2001

CTL temporal logic

Computation Tree Logic (branching):
Consider the tree of possible executions

Always ...

Sometimes ...

... Next p ... Globally p ... Finally p ... p Until q

AX p A[p U q]AG p AF p

EX p E[p U q]EG p EF p

duals

In all states

In some state

© Charles Pecheur 23ULg 12 Nov 2001

Example: compute EF p from p with BDDs:

EF p = lfp U . (p | EX U)

= least solution of U = p | EX U
U0 = 0

U1 = p | EX U0 = p

...

Un+1 = p | EX Un = p | EX p | ... | EXn p

until Un = Un+1 = EF p

– Convergence assured because finite domain

– Backward search from p to EF p

Evaluating CTL
with BDDS

p

 p | EX p

EF p

p | EX (p | EX p)

0

© Charles Pecheur 24ULg 12 Nov 2001

Variable Ordering

• Must be the same for all BDDs

• Size of BDDs depends critically on ordering

• Worst case: exponential w.r.t. #variables
– sometimes exponential for any ordering

e.g. middle output bit of n-bit multiplier

• Finding optimum is hard (NP-complete)
=> optimization uses heuristics

© Charles Pecheur 25ULg 12 Nov 2001

SMV

• SMV = Symbolic Model Verifier.

• Modeling language based on parallel assignments.

• Specifications in temporal logic CTL.

• BDD-based symbolic model checking.

• Several versions:
– (CMU) SMV: original work by McMillan (Carnegie Mellon)
– NuSMV: clean re-writing, faster (ITC-IRST and CMU)

– Cadence SMV: following McMillan (Cadence Berkeley Labs)

© Charles Pecheur 26ULg 12 Nov 2001

What SMV Does

MODULE user(...) ...

MODULE main
VAR turn: {1 , 2};
 user1: u ser(...);
...

SPEC AG !(
 (user1.s tate = c) &
 (user2.s tate = c))

-- specifica tion AG ...
 is false
-- as demons trated by ...
state 1.1:
turn = 1
user1.state = n
user2.state = n

state 1.2:
...

resources us ed: ...

smv mutex.smv

Model

Counter-example
Specification

mutex.smv <stdout>

© Charles Pecheur 27ULg 12 Nov 2001

SMV Program
Example (1/2)

MODULE user(turn,id,other)
VAR state: {n, t, c};
DEFINE my_turn :=
 (other=n) | ((other=t) & (turn=id));
ASSIGN
init(state) := n;
next(state) := case
 (state = n) : {n, t};
 (state = t) & my_turn: c;
 (state = c) : n;
 1 : state;
esac;

SPEC AG((state = t) -> AF (state = c))

n

t

c
my_turn

!my_turn

© Charles Pecheur 28ULg 12 Nov 2001

SMV Program
Example (2/2)

MODULE main
VAR turn: {1, 2};
 user1: user(turn, 1, user2.state);
 user2: user(turn, 2, user1.state);
ASSIGN
init(turn) := 1;
next(turn) := case
 (user1.state=n) & (user2.state=t): 2;
 (user2.state=n) & (user1.state=t): 1;
 1: turn;
esac;

SPEC AG !((user1.state=c) & (user2.state=c))
SPEC AG !(user1.state=c) -- false!

© Charles Pecheur 29ULg 12 Nov 2001

Diagnostic Trace
Example

-- specification AG (state = t -> AF state = c) (in module
user1) is true

-- specification AG (state = t -> AF state = c) (in module
user2) is true

-- specification AG (!(user1.state = c & user2.state = c)...
is true

-- specification AG (!user1.state = c) is false
-- as demonstrated by the followin g execution sequence
state 1.1:
turn = 1
user1.state = n
user2.state = n

state 1.2:
user1.state = t

state 1.3:
user1.state = c

© Charles Pecheur 30ULg 12 Nov 2001

• The SMV program defines:
– a finite transition model M (Kripke structure),
– a set of possible initial states I (may be several),
– specifications P1 .. Pm (CTL formulas).

• SMV checks that each specification P is satisfied
in all initial states so of model M.

∀ so ∈ I . M, so = P

The Essence of SMV

© Charles Pecheur 31ULg 12 Nov 2001

Outline

• Model-Based Autonomy and Livingstone

• Symbolic Model Checking and SMV

• Verification of Livingstone Models

© Charles Pecheur 32ULg 12 Nov 2001

Livingstone Models

• concurrent transition
systems (components)

• synchronous product

• enumerated types
=> finite state

Essentially ≈ SMV model

+ nominal/fault modes,
commands/monitors (I/O),
probabilities on faults, ...

ClosedClosed

ValveValve

OpenOpen StuckStuck
openopen

StuckStuck
closedclosed

OpenOpen CloseClose

inflow = outflow = zero

Courtesy Autonomous Systems Group, NASA Ames

p=0.001p=0.001

p=0.01p=0.01

Diagnosis = find the most likely assumptions (modes)
that are consistent with the observations (commands/monitors)

inflow = outflow

inflow, outflow : {zero,low,high}

© Charles Pecheur 33ULg 12 Nov 2001

Large State Space?
• Example: model of ISPP = 7.16·1055 states
• This is only the Livingstone model – a complete

verification model could be
Exec driver (10-100 states)

x Spacecraft simulator (1055 states)
x Livingstone system (keeps history – 10n·55 states)

• Verify a system that analyzes a large state space!
• Approach: the model is the program

– Verify it (using symbolic model checking)
– Assume Livingstone correct (and complete)

© Charles Pecheur 34ULg 12 Nov 2001

MPL2SMV

Livingstone
Model

SMV
Model

Livingstone
Requirement

SMV
Requirement

Livingstone
Trace

SMV
Trace

Livingstone

SMV

M
P
L

2

S
M
V

Autonomy Verification

© Charles Pecheur 35ULg 12 Nov 2001

Translator from Livingstone
to SMV

• Co-developed with CMU (Reid Simmons)
• Similar semantics => translation is easy
• Properties in temporal logic + pre-defined patterns
• Initially for Livingstone 1 (Lisp),

upgraded to Livingstone 2 (C++/Java)

© Charles Pecheur 36ULg 12 Nov 2001

(load "mpl2smv.lisp")
;; load the translator
;; Livingstone not needed!

(translate "ispp.lisp" "ispp.smv")
;; do the translation

(smv "ispp.smv")
;; call SMV
;; (as a sub-process)

Principle of Operations

(defcomponent heater …)
(defmodule valve-mod …)
…
(defverify
 :structure (ispp)
 :specification (all (gl obally …)))

(defcomponent heater …)
(defmodule valve-mod …)
…
(defverify
 :structure (ispp)
 :specification (all (gl obally …)))

MODULE Mheater …
MODULE Mvalve-mod …
…
MODULE main
VAR Xispp :Mispp
SPEC AG …

MODULE Mheater …
MODULE Mvalve-mod …
…
MODULE main
VAR Xispp :Mispp
SPEC AG …

Specification AG … is fal se as shown …
State 1.1: …
State 1.2: …

Specification AG … is fal se as shown …
State 1.1: …
State 1.2: …

ispp.lisp

ispp.smv

SMV output

Lisp shell

© Charles Pecheur 37ULg 12 Nov 2001

Simple Properties

• Supported by the translator:
– syntax sugar

– iterate over model elements (e.g. all component modes)

• Examples
– Reachability (no dead code)

EF heater.mode = on

– Path Reachability (scenario)
AG (s1 –> EF (s2 & EF (s3 & EF s4)))

© Charles Pecheur 38ULg 12 Nov 2001

Probabilistic Properties

• Use probabilities associated to failure transitions

• Use order of magnitude: -log(p), rounded to a
small integer

• Combine additively, OK for BDD computations

• Approximate – but so are the proba. values

heater.mode = overheat -> heater.proba = 2; (p = 0.01)

proba = heater.proba + valve.proba + sensor.proba;

SPEC AG (broken & proba < 3 –> EF working)

© Charles Pecheur 39ULg 12 Nov 2001

Functional Dependency

• Check that y=f(x) for some unknown f
• Use universally quantified variables in CTL

= undetermined constants in SMV
VAR x0,y0 : {a,b,c};
TRANS next(x0) = x0
TRANS next(y0) = y0
SPEC (EF x=x0 & y=y0) –> (AG x=x0 –> y=y0)

• Limitation: counter-example needs two traces,
SMV gives only one
=> instantiate second half by hand, re-run SMV

≈ ∀ x0, y0

© Charles Pecheur 40ULg 12 Nov 2001

Temporal Queries

• Temporal Query = CTL formula with a hole:
AG (? –> EF working)

• Search (canonical) condition for ? that satisfies the
formula (computable for useful classes of queries)

• Recent research, interrupted (William Chan,
†1999)

• Problem: visualize solutions (CNF, projections, ...)

• Core algorithm implemented in NuSMV
(Wolfgang Heinle)

• Deceptive initial results, to probe further

© Charles Pecheur 41ULg 12 Nov 2001

SMV with Macro Expansion

• Custom version of SMV (Bwolen Yang, CAV 99)

• Eliminates variables by Macro Expansion:
– analyzes static constraints of the model (invariants),

– find dependent variables x=f(x1,...,xn),
– substitute f(x1,...,xn) for x everywhere,

– eliminate x from the set of BDD variables.

• For models with lots of invariants
=> useful for Livingstone models

• Full ISPP model in < 1 min, vs. SMV runs out of
memory.

© Charles Pecheur 42ULg 12 Nov 2001

ISPP Model Statistics

• In Situ Propellant Production (ISPP)
= turn Mars atmosphere into rocket fuel (NASA KSC)

• Original model state = 530 bits (trans. = 1060 bits)

• Total BDD vars 588 bits
Macro expanded -209 bits
Reduced BDD vars 379 bits

• Reachable state space7.16·1055 = 2185.5

Total state space 1.06·1081 = 2269.16

• Reachability of all modes (163):
29.14" CPU time in 63.6 Mb RAM

© Charles Pecheur 43ULg 12 Nov 2001

Diagnosis Properties

• Can fault F always be diagnosed?
(assuming perfect diagnosis and accurate model)
= is F unambiguously observable?
∀ obs0 . (EF F & obs=obs0) –> (AG F –> obs=obs0)

• Similar to functional dependency

• obs = observable variables (many of them)

• Static variant (ignore transitions):
SAT on two states S, S' such that
F & ! F' & obs=obs'

© Charles Pecheur 44ULg 12 Nov 2001

• Very recent (yesterday), with Alessandro Cimatti

• Can fault F be diagnosed knowing the last n steps?

• Apply SAT to:

• Variants are possible (e.g. fork at n-1 intead of 0)

Diagnosis Properties Revisited

...

x0

x1

x1'

x2

x2'

xn

xn'

T

T

T

T

T

T

T

T

cmd
obs

cmd
obs

cmd
obs

F

! F...

© Charles Pecheur 45ULg 12 Nov 2001

Diagnosis Properties (cont'd)

• Does it work?
– Computational cost of extra variables

• Has it been done?
– Similar work in hardware testability?

• Is it useful?
– It is unrealistic to expect all faults to be immediately

observable (e.g. valve closed vs. stuck-closed)

– What weaker properties? Are they verifiable?

• To be explored

© Charles Pecheur 46ULg 12 Nov 2001

Summary

• Verification of model-based diagnosis:
– Space flight => safety critical.
– Huge state space (w.r.t. fixed command sequence).

• Focus on models (the model is the program)
• Quite different from executable programs

– Loose coupling, no threads of control, passive.
– Huge but shallow state spaces.

• Symbolic model checking is very appropriate
• Verify well-formedness + validity w.r.t. hardware
• Verify suitability for diagnosis: to be explored

© Charles Pecheur 47ULg 12 Nov 2001

Thank You

© Charles Pecheur 48ULg 12 Nov 2001

Symbolic Model Checking
References

R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677-691, 1986.

The seminal paper on Binary Decision Diagrams.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic
model checking: 10^20 states and beyond. Information and Computation, vol.
98, no. 2, 1992.

Survey paper on the principles of symbolic model checking.

Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic
model checking without BDDs. In W. R. Cleaveland, ed., Tools and
Algorithms for the Construction and Analysis of Systems (TACAS),
Amsterdam, March 1999.

Paper on SAT-based bounded model checking.

© Charles Pecheur 49ULg 12 Nov 2001

Symbolic Model Checking
References (cont'd)

J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential circuit
verification using symbolic model checking. In 27th ACM/IEEE Design
Automation Conference, 1990.

Symbolic model checking of CTL with fairness.

E. Clarke, O. Grumberg, H. Hamaguchi. Another Look at LTL Model Checking.
Formal Methods in System Design, Volume 10, Number 1, February 1997.

Verifying LTL using symbolic model checking.

© Charles Pecheur 50ULg 12 Nov 2001

SMV
References

Ken McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

Based on Ken McMillan's PhD thesis on SMV.

Ken L. McMillan. The SMV System (draft). February 1992.
http://www.cs.cmu.edu/~modelcheck/smv/smvmanual.r2.2.ps

The (old) user manual provided with the SMV program.

A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A New Symbolic
Model Verifier. In N. Halbwachs and D. Peled, eds., Proceedings of
International Conference on Computer-Aided Verification (CAV'99), LNCS
1633:495-499, Springer Verlag.

Survey paper on NuSMV.

